AJTHOR

TITLE
INSTITUTION
SPONS AGENCY
BUREAU NO
POB DATE
CONTRACT
NOTE

EDRS PRICE DESCRIPTORS

IDENTIFIERS

Kim, K. Ed.; And Others
Base Numeration Systems and Introduction to Computer Programming.
Institute for Services to Eajucation. Inc., Washington, D.C.
National Inst. of Education (DHEW), Washington, D.C.

BR-7-0867
71
OEC-0-8-070867-0001
64p.; Appendix material from ED 084 936; Occasional aarginal legibility

> MF-\$0. 76 日C- $\$ 3.32$ Plus Postage *College Mathematics; Computer programs; *Computer' Science Education; Guides; Higher Education; Instruction; *Instructional Materials; Mathematics Education; Number Systems; programing; Secondary Education; *Secondary School Mathematics; *Teaching Guides
> ForTRAN Language; Thirteen College Curriculum Prograim

ABSTRACT
This teaching guide is for the instructor of an introductory course in computer programing using fortran language. Pive FORTRAN programs are incorporated in this guide, which has been used as a FORTRAM IV SELF TEACHER: The base eight, base four, and base two concepts are integrated with FORTRAM computer programs, geoblock activities, and related exercises. Each statement of the first rortran program is described in detail with suggested discussion questions and activities. (Subsequent programs are given without detail.) The FORTRAN programs included are: (1) change base eight numefals to base ten numerals, (2) determine the number of significant places for a giten input data, (3) list the even numbers less than $2 C_{0}$ for the base eight. (4) give the integral powers of ten in scientific notation, and (5) give the multiples of four in the base eight. Teaching suggestions include the modification of illustrated programs as well as activities for teaching of the design of a simple computer, unconditional and conditional transfer statements, and dO LOOPS. Fixed point (integer) system and floating point systems of computation in the digital computer are described. Problems with mathematical operation symbols complete the activities in the manual: (JBW)

Documents acquired by ERIC include many informal unpublished materials not available from other sources. ERIC makes every effort to 'obtain the bestycopy available. Nevertheless, items of marginal reproducibility are often encountered and this affects the qualify of the microfiche and hardcopy reproductions ERIC makes available via the ERIC Document Reproduction Service (EDRS). () is not responsible for the quality of the original document. Reproductions supplied by EDRS are the best that can be made from

BASE NUMERATION SYSTEMS AND INTRODUCTION TO COMPUTER PROGRAMMING

editorial committee
K. Kim (1970)
W. Mint (1970)
H. Hamilton (1970)
A. Lewis (1970)
L. Batra (1969-70)
B. Stubblefield (1969-70)

G: Latortue (1969-70)
M. Turner (1970)

PERMASCION TO REPRODUCE THIS COPV. highteo lategial hag ceen ghanied oy

ISE

- To eric and onganizationo operatirg WNEEA AGREGMENTS WITH THE NATLONALI IN JNDEA AGREEMEPTS WITH THE NATLONAL IN. GTITUTE OA EDUCAYION FUATHFA EEFRD - DUCTION OUTEIDE THE ERUC FUE, ESM REQURES FERTMICSION OF THE COPYRIGHT ONWER

THIRTEEN COLLEGE CURRICULUM PROGRAM in conjunction with CURRICULUM RESOURCES GROUP OF ISE

 D. C. 20009. No part of this material may be reproduced in any form whatsoever without the. express written consent of the Curriculum Resources Group.3

ABOUT THE INSTITUTE FOR SERVICES TO EDUCATION

The Institute for Services to Education-was incorporated as a non-profit organization in 1965 and received a basic grant from the Carnegie Corporation of New York. The organization is founded on the principle that education today requires a fresh examination of what is worth teaching and how to teach it. ISE-uhdertakes a variety of educational tasks, working cooperatively with other eduçational institutions, under grants from government agencies and private foundations. ISE is a catalyst for change. It does not just produce educational materials or techniques that are innovative: it develops, in cooperation with teachers and administrators, procedures for effective installation of successful materials and techniques in the colleges.

- ISE is headed by Dr. Elias Blake, Jr., a former teacher and is staffed by college teachers with experience in working with disadvantaged youth and Black youth in educational settings both in predominantly Black and predominantly white colleges and schools.

ISE's Board of Directors consists of persons in the highereducation System with histories of involvement in curriculum change. The Board members are:

Vernon Alden
Herman Branson
Kingman Brewster, Jr.
Donald Brown
Arthur P. Davis
Carl J. Dolce
Alexander Heard
Vivian Henderson
Martin Jenkins
Samuel Nabrit
Arthur Singer
Otis Singletary
C. Vann Woodward

Stephen Wright
Jerrold Zachatias

Chairman of the Board, The Boston Company, Bostorf, Massachusetts President. Lincoln University
President, Yale University
The Center for Research on Learning and Teaching, University of . Michigan
Graduate Professor in English, Howard University
Dean, School of Education, North Carolina State University
Chancellor, Vanderbilt University
President. Clark College
Director, Urban Affairs, ACE
'Executive Director, Southern Fellowship Eund, Allanta, Georgia
Vice President, Sloan Foundation, New York New York
President, University of Kentucky
Professor of History, Yale University
Consultant to President of CEEB
Professor of Physics, Massachusetts Institute of Technoftogy

ABOUT THE THIRTEEN-(OLLEGE CURRICULUM PROGRAM

a From 1967 to the present, ISE has been working cooperatively with the Thirteen-College Consortium in developing the Thirteen-College Curriculum Program. The Thirtern-College Curriculum Program is an educational experiment that includes developing new curricular materials for the entire freshman year of college in the areas of English, mathematics, social science.physical science, and biology and two sophomore year courses, humanities and philosophy. The program is designed to reduce the attrition rate of entering freshmen through well thought-out, new curricular materials, new teaching styles, and new faculty arrangements for instruction. In addition, the program seeks to alter the educational pattern of the institutions involved by changing blocks of courses rather than by developing single courses. In this sense, the Thirteen-College Curriculum Program is viewed not only as a curriculum program with a consistent set of academic goals for the separate courses, but also as a vehicle to produce new and pertinent educational changes within the consortium institutions. At ISE, the program is directed by Dr. Frederick S. Humphries.

Vice-President. The curricular developments for the specific courses and evaluation of the program are provided by the following persons:

In addition. Miss Patricia Parrish serves as general ditor of the curriculum materials as well as an Administrative Assistant to the Director. Mrs. Joan Cooke is Secretary to the Director.

The curriculum staff is assisted in the generation of now eduational ideas and teaching strategies by teachers in the participating colleges and outside consultants. Each of the curriculum areas has its own advisory committee, with memberydrawn from distinguished scholars in the field but outside the program.

The number' of colleges participating in the program has grown from the original thirteen of 1967 to nineteen in 1970. The original thirteen colleges are:

Alabama A and M University ${ }^{\text {a }}$		Huntsville, Alabama
Bennett College		Greensboro, North Carolina
Clark College		Dallas, Texas
Florida A and M University		Atlanta, Georgia
Jackson State College		Tallahassee, Florida
Lincoln University		Lincoln University, Pennsylvania
Norfolk State College		Norfolk, Virginia
North Carolina A and T State University	\%	Greensboro, North Carolina
Southern University		Baton Rouge, Louisiana
Talladega College		Tralladega, Alabama
Tennessee State University		Nashville, Tennessee
Voorhees College t.		Denmark, South Carolina

A fourteenth college joined this consortium in 1968, although it is still called the Thirteen-College Consortium. The fourteenth member is

> Mary Holmes Junior College

West Point, Mississippi

In 1970, five pore colleges joined the effort although linking up as a separate consortium. The members of the Five-College Consortium are:

```
Elizabeth City State University
Langston University
Southern University at Shreveport
Saint Augustine's College
Texas Southern University
```

Elizabeth City, North Carolina
Langston, Oklahomd
Shreveport, Louisiana
Raleigh, North Carolina
Houston, Texas

In 1971, eight more colleges joined the curriculum development effort as another consortium. The member schools of the Eight College Consortium are:

Alcorn A and M College
Bethune-Cookman College
Grambling College
Jarvis Christian College
LeMoyne-Owen College
Southern University in New Orleans
University of Maryland, Eastern Shore
Virginia Union University

Lorman, Mississippi
Daytona Beach, Florida
Grambling, Louisiana
Hawkins, Texas
Memphis, Tennessee
New Orleans, Louisiana
Princess Anne, Maryland
Richmond, Virginia

The Thirteen-College Curriculum Program has been supported by grants from:
The Office of Education, Title III, Division of College Support
The Office of Education, Bureapof Research
The National Science Foundation, Division of the Undergraduate Education
The Ford Foundation
The Carnegie Corporation
The Esso Foundation

```
Four Years In The Program
Margater Artis (NC)
Bernis Barnes (JA & ISE)
Laj Batra (CL)
Calvin Browne (TE & AL)
Reuben Drake (NC)
Carolyn Harris (CL)
Janie Jordan (NF)
Nancy Ledet (TE)
Johnsie Jo Posey (SB)
Carl Whitman (FL)
Three Years In The Program
Joseph Colen (JA)
Charles !:aynie (ISL)
Dorothy'Hogan (BI)
Roger Ingraham (VO & BE)
Carolyn C. Johnson (NF)
Harold King (BI)
James Kirkpatric (AL)
Two Years In The Program
Jack Alexander (ISE)
Ruth Carter (AL)
Beatrice Clarke (FL)
John Ernst (MH)
Lee Evans (ISE)
Pralinat Hazra (LI)
Kenneth Hoffman (TA) A
Gwendolyn Humphrey (FL)
Reuben Kesler (VO)
Vivian Kline (LI)
Huber Lamutte (SB)
Gerard Latortue (VO)
Vernon Lowenber: (TA)
Theodore Morgan (Sb)
A. K. Mukherjee (LI)
Dorothea Smith (AL)
Beauregard Stubblefield (ISE)
```

One Ycar In The Program
Douglag Andersion (JA)
William Barclay (ISE)
Barbara Bardwell (BI)
Hollie Laker (NF)
is Joel Bralnard (TA)
Willie Brown (JA)
Donald but.er (LA)
Nancy Everett (SS)
Robert Ghent (iA)
Henrilynn Gordon (TS)
Herbert hampiton (mS).
Alfred Hawkins (BI)
Robert Holilster (TA)
John James (BC)
Ki w. kia (Lí)
Henry Lewis (SA)
Addessa Lewis (SA)
Mary iove (TE)
V. P. Manglick (EC)

Robert Mckean (LI)
S. S. Sachdev (EC)

Eddie Paramore (BE)
Walter Talbot (ISE)
Melvin Turner (SS)
Elbert White (MH)
Frank Wyse (TA)

Summer

- Fred Binford (Tr)

Arthur Bragg (ISE)
Evelyn Edwards (ISE)
Boyd Jones (NF)
Phillip McNeil (ISE)
" Virginia Merrill (ISE)
Harold Murray, Jr. (SAC)
Win yint (TE)
William Nicholson (ISE)
Mary Payton (SAC)
Argelia Rodriguez (BI)
Jean Savary (BI)
Euclides Torress (BI)
Ray Treadway (BE)
John. Wiley ${ }^{\prime}$ (ISE)

[^0]BASE NUMERATION SYSTEMS
IATRODUCTION TO COMPUTER PROCRAMMING;

Aearly overyone has heard of the electronir devire known as the elertronic computer which has been developed and is in widespread use by businessmen, seientists, and engineers to assist the in ot tining the solutions ot many lypes of problems. A computer program is a collection or instructions (arranged in a predetermined or : wath and allows the ompiter to carry out a sequence of func dons for the expeess prpose of ahtaining the solution of a particalar problem.

In this unit you will fird meay probldms that the computer has helped to solve. It is only natural to expect that the omputer progrdm: $\because s=1$ as well as the solutions will at times be included. Thus, fits allows yo: to be told some ways to recognize problems you may nave that can benefit from the method nasd Because very little extra computer time would be needed to solve other problems of the samo style, these solutions are included as proper subsets of largrer cots. Thus. the teacher may use this unit, not only to find the answers foriose problems contained herein, but also to select from dmong the ...rr, dlitional exerrises and test questions.

This untt has been sheressfully used as a FORTRAN IV SELF-TEACHER. Zach type of instruction listed in the pron-am is described in detail before its 140 . The doscrintions are oiven in the order in
rhin the instructions appear in the unit. If any computer instruction has been previously des ribed, it is so indicited by reference: either th a previous program ar to an earlier portion of the current program. Aiso, sample data and the manipulation thereot are given in a form su that the reader may follow the results thoughtout the program.
 \therefore ramaing effort will be lamobed. The base of a numeration bys. am is named accorling to the number of symbols used to represent numbers in that system. For example, there fis only one symbel, 1 , for the Base One Numeration Sustem. For this syifem, we write

- 1 . to represent the number of mons the earth has.

11 to represent the momer of elemonts'in a pair,
111 to represent the number of members of a trio, and 1111 torepresent the number of people in a quartet.
 in a carton. Base and Syster if equivalent to tallying. Note that Ne canot frite zero in this s.ator At the other extreme, in tho base Infinity System, there is a different symbol used for each nurine: Necessarily, there are infinitery miny symbols as every number mast be represented by a different symbo:.
\because Fit reterence is given in columns $73-80$ of the instruction, coinms

In the Base One System, it would be a tedious task to write representations for large numbors, and the Base Infinity System would be ton taxing on the brains to eodd. Theretore, we shall limit our discussion to finite hase mumeration systems which lie between these two qysiems.
2.1 Bac Eight As A System of Nmmeration

We shall now experiment with a base numeration system which is between the Base One System and the Base Infinity System. In making use of our previous experiences in the Base Ten System, we experiment with the Base Eight System* of iumeration in which there are exactly ?ight symbols, $0,1,2,3,4,5,6$ and 7 . In this system

1 represents the number of noses one has,
2 represents the number of shoes a person wears,
? represents the number of sides of a triangle,
4 represents the number of bases of a baseball diamond,
5 represeats the number of toes on a normal right foot,
6 represents the number of sides $n f$ a hexagon,

7 represents the number of continonts in the world,

10 represents the number nf letters in the word computer**:
11 rupresunts tiof number of plavers on'the starting baseball team,
 1, to 1 Su in Base Ter, skipping any number having a numeral representation nitainime in 2 ar a $?$.
f **:ote: Verbal translation of 10 (Base iight) is one zero rather than tie word ten since ten means ten ones and lo (Base Eirht) means eight anos. lienca, caroful verial symbe ipation should bo used to prevent ambiguity in the exact meaning of $i \because$ svmbol.

12 represents the number of fingers on your two hands,
13 represents the number of menbers of a football team,
14 represents the number of eggs in a dozen,
15 represents the unlucky number, and
16 represents the number of days in a fortnight.
Using the Base Eight ilumeration System, give the numerals to represent:
(a) the number of pennies in three nickels
(b) the square of four
(c) the ninth odd number
(d) the ninth even number
(c) the tenth odd number
(f) the tenth even number
(g) the elaventh odf number
(h) tie eleventh even number
(i) the twelfth ndi number
(i) the number of hour: in a day
(k) the square of five
(1) the number of letters in the alphabet
(m) the culse of three
(n) the number of days in Febriary (non-lear) year)
(o) the number of days in February in a leap year
(p) the number of days in September
(q) the number of days in lanuary
(r) the fifth power of two
(s) the product three and eleven
(t) the number of days in five weeks
(u) the number of inches in a yard
2.2 Place-Values And Face-Values In The Base Eight Numeration System In the Base Eight Numeration System numerals are written to indicate numbers. Each symbol of the numeral has two values, a face-value and a place-value. In the numeral 342 the face-value of 2 is two and the place-value of two is one. The face-value of 4 is four and the place-value of 4 is eight. The face-value of 3 is three and the place-value of 3 is sixty-four. The corresponding Base Ten numeral is given by $3 \times 64+, 4 \times 8+2 \times 1$ or 226 .

Example 1. State the place-value shown by each symbol in the Base Eight numeral 753.

The 7 in the numeral 753 is a symbol for seven eight-eights or seven sixty-fours.

The 5 in the numeral 753 is a symbol for five eights.

The 3 in the numeral 753 is a symbol for three ones.

Example 2. How many blocks should be added to the set on the left to make an octet of octets of octets?

Answer. Five blocks are needed to go with the three ones to get an octet. Two more octets are needed to get eight octets. This octet of octets will be sufficient to complete the eight octets of octets.

Total. 2 blocks of 8 and 5 unit blocks which can be witten as 25 in base 8.

Exercise: Find the face-values and pace-jalues in the ?ase Eight numeral 653.

Example 4. Expand each of the following Base Eight numerals in Base Ten.
(a)

Answer: Base Ten Face-Values Base Eight Numeral

Base Ten Place-Value

2		7
t		\uparrow
2		7
\downarrow		\downarrow
8		1

$=2 \times 8+7 \times 1$ as Base Ten Numeral 23
(b)

BASE TEN FACE-VALUES
BASE EIGHT NUMERAL
BASE TEN PLACE-VALUES

Games:

(a) Use cubic reo-blocks to indicate the Base Eiokt numeral 33.
(b) Use cubic Geo-blocks to indicate the Base Eight numeral 47.
(c) Use cubic Geo-blocks to indicate the Base Eight numeral 77.
(d) Use cubic Geo-blocks to indicate the following addition.

317	327	777
+111	$+\quad 1$	

(e) Use cubic Geo-blocks to indicate the following subtraction.

446	543	
-222	-234	333

17

We see that the last symbol on the right of a numeral indicates the number of ones, the next to last symbol sives the number of base numbers, the next symbol gives the number of squares of base numbers, the next symbol gives the number of cubes of base numbers, etc. With this knowledge, we can easily convert a base eight numeral to a base ten numeral. In writing and reading numerals, we think of them as the numbers that they represent.

$$
\begin{aligned}
\text { The number }{ }^{13_{8}} & =3_{10}+8_{10}=11_{10} \\
\text { The number } 4726_{8} & =6_{10}+2_{10}\left(8_{10}\right)+7\left(8_{10}\right)^{2}+4\left(8_{10}\right)^{3} \\
& =2,518
\end{aligned}
$$

The number ${ }^{125} 8=5_{10}+2_{10}\left(8_{10}\right)+1\left(8_{10}\right)^{2}=85_{10}$

Exercises

1. Complete the following table:

Base Eight		1	7	21		35	427
Base Ten	0					27	

©

FORTRAN PROGRAM NO. 1
Referer.

1234567	20	30	40	50	60	.70
C	BEAU GERA LAJ					

Columes
COMMENT
COMMENI
C PROBLEM NO. 1 PAGE. 40
COMMENT

C PROGRAM TO CHANGE TEN EIGHT-PLACE BASE EIGHT NUMBEFS TO BASE TFN	
C	SPACE CALLED NCRDS TLLLS US THE NUMBER OF CARDS OF DATA (2 DIGITS

COMOTHT
C WE SHALL RESERVE EIGYTY SPACES FOR TYI RECTANGULAR ARRAY N (8, 10)
COMMENT WE SHALL RESERVE TEN SPACES FOR THE BASE TEN ANSIVERS *i(10) COMMENT
C WE SHALL RESERVE TEN SPACES FOR THE BASE EIGHT INPUT NUMBERS L(10 COMMENT
1 DIIENSION $N(8,10), ~ M(10), L(10)$
2 READ (1,3) NCRDS

- 3 FORMAT (I2)

4 102 $24 \mathrm{~K}=1$, NCRDS
C THE FOLLOWING READ STATEMENT CAUSES DATA TO BE STORED BY COLUINS . COMMENT
$5 \mathrm{READ}(1,6) \mathrm{N} \quad 1-2$
6 FORMAT (8011) 1-3
7 DO $21 \mathrm{~J} 口 1,10 \quad 1-4$
$8 \mathrm{MX}=0$
$9 \mathrm{LY}=0$
1-8
10 PORMAT (1H, 10I10)
$11 \mathrm{DO} 18 \mathrm{~T}=1,8$
$1-4$
12 IF (I.EQ. 8) GO TO 16
$13 M X=M X+N(T, J) * 8 * *(8-T)$
14 LX $=L X+N(I, J) * 10 * *(8-1) \quad 1-13$
15 GO TO 18
$1610=M X+N(I, J)$
1-13
$17 \mathrm{LX}=\mathrm{LX}+\mathrm{N}(\mathrm{I}, \mathrm{J})$
1-13
18 CONXINUE
$19 \mathrm{M}(\mathrm{J})=\mathrm{MX}$
1-13
$20 \mathrm{~T}(\mathrm{~J})=\mathrm{LX}$
1-13
21 CONTTNIJE . $1-18$
22 :NITE $(3.10) \mathrm{L}$
23 URITE $(3,10) \mathrm{M} \quad 1-22$
24 CONTINUE $\quad 1 . \quad 18$
25 STOP
26 END.

Use the Geo-board to follow the given data throughout the execution of the instructiong in the FORTRAN PPOGRAM NO. 1. After the execution of the first program instruction, the Geo-board may look like this:

EXPLANATION OF FORTPAN PROGRA: NO. 1
Each line in the program represents a. program card. There are eighty columns on each card. In each column there is either a blank space or
 the ten numerals (from 0 to 9), the twenty-six letters of the alphabet (r-nm A to Z), the period, the comma, the left parenthesis, the right parenthesis, the equal sion, the plus bign, the minus sign, the asterisk and the dollar sign:

Each column of an eighty column card has twelve slots which are labeled as shown below.

We may punch holes in theséslots. Dependine unon which particular :column sits are punched in a column, we represent various symbols. Since there are twelve slots in each colum, there are $2 l 2$ possible colminations of punched slots for each of the columns. However, since there are fewer than 50 symbols to be used, (10 numbers, 26 letters; etc.), then the 2^{12} different combinations are more than adequate.

Each, card will have either a C representation in the first column or will have nothing there. If a card has a C in the first column, then the information is given to the processor that the information on the card is only a Comment. That is, the information is not to be processed. Another way of saying this is that the processor will ignore these commants.

We note that in the propram under study, the first seven cards are com-- ment cards.

Ouestion: Is there nother coment card in this program? If so, what is it?
If a card does not contain a C in the first column, then the card contains at least in part, a program statement, and this program statement may in turn be either executable or not executable. Executable statements are executed in the order that they are listed unless changed by a control statement.

Firse Scatement

DI'ENSION $N(8,10), H(10), L(10)$
This first statement is called a DIMENSION STATE TENT.
The first program statement is an executable statement: Since all numbered statements must be numbered in columns 2 to 5 , and this state-型施 is numbered, its number, " 1 " is placed in column 5. However, since this statement is never referred to in the program by another statement, it need not have been numbered. Also, though numbered, it need not $:$ ave been numbered " 1 ". Any number would have sufficed.

Huberal tatamier do rot have to be listed in numerical order. This first statement requests the processor to reserve space in the storage compartment of the computer for three separate arrays of numbers.
(a) An 8×10 two-dimensional array as shom below,

(b) A one-dimensional array of 10 snaces as shown oelow.

(c) Another one-dimensional array of 10 spaces.

Note: All statements begin in column "7.
Draw a picture representation for the array mentioned to (c) ahove. He should emphasize that the names of the snaces to be reserved
(a) may not be more than six characters long, and
(b) must consist of letters, or letcers and numerals, the first of which sust be a letter.

Examples:

The name	name	is acceptable.
The name	RESERVE	is not accedtable. (too many characters)
The name	2MT.	is not acceptable. (a number comes first.)
The name	:'R2	is acceptable.
The name	MR, 2	"is not acceptable. (The comma is neither a letter nor a numeral.)

In a DIME SION STATE'ENT, all names of spaces to bc reserved are to be subscripted. However, subscripts are not to be counted when determining the length of the name.

Example
The name $\quad \operatorname{BOY}(1,1)$ is acceptable. (There are only the characters B, O, and Y in the name inself.)

Duestions:
(a) What is the total number of snaces that are reserved by the first statement?
(b) Can you write a statement which causes the processor to reserve a total of two hundred fifty snaces? If so, what is it?
(c) Can a subscrint have more than six characters? If so; give an example.
(d) Can a statement have a larger statement number than the one which follows it?
(e) How large can a statement number be?

Second Statement

```
RRAD (1,3) NCRDS
```

This otatement is called a READ STATEMENT. It io sa executable otatement; it requests the proceosor

to reserve one space in the storape compartment of the computer which hereafter will be referred to as NCRDS if euch named space has not previously been reserved (In case that such space has previousiy been reserved, this request is to be ignored.), and
(b) to read frow rachine number one (THE CARD READER) Into this space (called NCRDS), the numer which is on the mext card in machine number one. read according to information FORMAT NO. 3. Thus Statement No. 3 tells the processor how the number appears on the card.
(e) eo irnore all enpty spaces as always.

Third Statement
FORMAT (I2)
This statement is called a FORMAT Statement. A format statement is not an executable statement. This statement
(a) is numbered since it is referred to in the program; (Remem-, ber that since a FORMAT STATEMENT is not executable, to be used in a program, it must be referred to; hence it must be numbered.),
(b) is referred to by the second statement, and
(c) tells the processor that the number to be read according to the second statement is an integer and occuples the firet, two columns on the card to be read.
FORMAT STATEMENTS may or may not follow the statement which refers to 1t: such statements may be placed any where in the program.

Fourth Statement

DO $24 \mathrm{~K}=1$, NCRDS
The fourth statement is called a DO STATEMENT. It asks the processor
to execute all statements following this DO STATEMENT down to and including statement number 24 as many times. as the number in the compufex storage space called NCRDS indicates. (For example, if NCRDS contaias .the number 9 , then the statements following this DO STATEMENT down to statement number 24 will be executed in order 9 times.) However before these statement $\$$ are executed the first time, a space called K is reserved in the computer by the processor and is given the intelat value of 1 . The number in space K is increased by 1 each time the sequence of numbers has been execured.

Questions: Is the second statement numbered? If so, could this number have been omitted? What about the third and . fourth statements?

Interpret the fifth, sixth, and seventh statements.
Eighth Statement*
$M X=0$

This statement is called a SUBSTITUTION STATEMENT. It has two functions:
(a) To request the processor to reserve in the storage compartment of the computer, a space called $M X$, if such space has not already been reserved, and
(b) to put the value of the right hand expression in that space.

Tenth Statement
FORMAT (1H, 101:10)
The tenth statement gives two bits of information to the processor:
(a) It tells the processor to print, using the printer, as many characters after the H as the number before the H indicates. (In the case of this function, blank spaces are regarded as characters.)
(b) It tells the processor the form that the 10 numbers should take whenever this format statement is referred to. In this particular case, statements 22 and 23 Koth refer to the statement number 10. Each of the ten numbers is considered to be a ten place integer.

Questions:

(a) Must the eighth statement have been numbered?

[^1](b) Is otorage space reserved in the computer by the processor in the execution of statement number eight?
(c) What to the value of the expresoion on the right hand side of statement number eight?
(d) Give your interpretation of Statement number nine. Is otorage opace reserved in the computer by the processor in the erecuetion of statement number nine?
(e) What is the value of the expression on the right hand oide of oratement number 9 ?
(E) What space is there reeerved in this computer by this otatement?
(g) Must the ninth statement have been numbered?
(h) Must the tenth statement have been numbered?
(1) What is your interpretation of Statement number eleven?

Twelfth Statcment

$$
\text { If (I . EQ . 8) CO TO } 16
$$

\bigcirc

The twelfth statement is called a CONDITIONAL GO STATEMENT. It tells , the processor to proceed to statement number 16 if the value of the number in space called I is equal to 8.

Thirteenth Statement

$$
M X=M X+N(I, J) * 8 * *(8-I)
$$

The thirteenth statement is another SUBSTITUTION STATEPENT. In determining the value of the expression on the right, the single asterisk is treated as a. "times" sign and the double asterisk is treated as an "exponential" sign. As in all forms of mathematics, multiplication and division take presidence over addition and subtraction. Also, all forms of prouping have higher priority. In the case of computer programing, the exponentiation comes between multiplication and division, and grouping.

Questions:
(a) What is your interpretaiton of Statement Number 13 ?
(b) State the purpose of Statement Number 14.

[^2]That changes would you make in Statement Number 13 in order to change those numbers to Base Ten?
(d) For Base Seven numbers, would you make any chances in Statemont Number 14?
(e) Would Format Statement Number 10 have to be changed to accomodate Base Seven numbers?
(f) In rewriting FORTRAN PROGRAM MO. 1 , would you mate any other changes in this program if you wished so change cen eight- . place Base Eight numbers to Base Ten?

Fifteenth Statement

GO TO 18
This statement is called an UNCONDITIONAL GO STATE PENT. It tells the processor to transfer control to statement number 18 under any condieton.

Questions.
(a) Explain Statement Number 16.
(b) Explain Statement Number 17.

Note Statements 16 and 17 are to be executed only when I is equal to 8 . At that time, statements 13 and 14 are not executed.
(c) Examine statements 13 and 14 to determine inky the instructrons were so programmed.

Note: The statements from Number 5 to Number 24 form our first DO LOOP. The statements from Number 8 through Number 21 form our second DO LOOP. Statements from Number 12 to Number 18 form our third DO LOOP. In any program, In LODPS may be nested: they must not be overlapping. In FORTRAN PPCGRAM NO. 1 , the three 0 LOOPS are nested.

Eighteenth Statement
CONTINUE
The CONTINUE STATEMENT tells the processor to continue doing whatever you have started. It is sometimes desirable to have this statement as a reference point for a DO STATEMENT; especially when otherwise there might be two possible places that you may want a particular DO LOOP to end

Questions:
(a) Explain Statement No. 19.
(b) Explain Statement No. 20.
(c) Explain Statement No. 21.

Twenty-Second Statement

WRITE $(3,10) L$
This is called a URITE STATEMENT. It requests the processor to write all numbers in the one-dimensional array called L, using machine numbbet 3 (the printer) according to FORMAT NO. 10. All leading zeros of a number will not be printed. Format statements must include an allowance of one extra space for the sign of a number.

Twenty-fifth Statement
STOP

The STOP STATEMENT tells the processor to execute no more statements.

Twenty-sixth Statement

END

The END STATEMENT tells the processor that this is the end of the program.

Problem. :
Using the data cards having input numbers arranged in the order in-- dicated below, tell what happens when FORTRAN Program No. 1 is executed.

Card 1, 03
Card 206735627354673254362766352701734660513652371005673421634
Card 374556321540654310967801046014421473021364773621472221327

- Card 4. 13672136521126503662445136231064012630112"56214725137210

2. Complete the table below giving the number of places for the numbers listed.

Number	37	1000	657	7777	0004	1007
Places	two					

FORTRAN PROGRAM NO 2
1234567

C	BEAU
C	PROGRA

* * *

σ
URITE $(3,22)$

Referen -Cotunn: CONAKAT COMMENT -1-22
22 FORMAT (2X, 37 A PROGRAM 2 ***** PROBLEM 3 PAGE 41 //) 1-10
DIMENSION BASE (10)
1-1
READ (1,1) BASE
${ }_{7} 1$ 1- 2
1 FORMAT (10 F8.0)
DO $20 \mathrm{I}=1,10$
$B=$ BASE (I) - $1 .-4$
$\mathrm{K}=8$
2-1
$3 \mathrm{~J}=\mathrm{B} / 10$ **K -1-8

IF ($\mathrm{J}, \mathrm{NE}, \mathrm{O}$) GO TO 18
1-12
$\mathrm{K}=\mathrm{K}-1$
1-13
$1 \mathrm{I}=\mathrm{K}+1 \mathrm{C}$
G0 T0 $3 \ldots$. $1-15$
18 WRITE $(3,19) \mathrm{I}$, BASE (I), KI
1-22
19 FORMAT (I 20, $\mathrm{F}^{1} 0^{\prime} .0,120 / /$)
2-22
20 CONTINUE
1-13
STOP
1-25
END
(a) Fully describe the statement L

WRITE $(3,22)$
(b) Each symbol / at the beginning or end of the Format detail causes the carriage return to become activated one extra time. When n is an inteper, then the symbol nX in a Format statement activates the printer by causing it to skip n spaces. With this explanation, describe fully Statement No. 22.
(c) Describe the statement

DIPIENSION BASE (10)
(d) Describe the statement READ $(1,1)$ BASE. i.
(ϵ) The Format statement n F 8.0 tells the processor that there are n numbers being considered. Each one is a real number written in decimal form (or floating Point form). Each number is eight places long and there are zero places to the right of the decimal point. Nith this knowledge, tell what Statement No. 1 does.

NOTE: Heretofore, the only numbers we have been using have been integers. Names of variables which are integers must, begin with one of the letters I, J, K, L, M and N. other real numbers (with decimals) begin with letters. other than these.
(f) Describe the following three statements.

$$
\text { DO } 20 \mathrm{I}=1,10
$$

$$
B=\operatorname{BASE}(I)
$$

$$
K=8
$$

(g) The symbolin $\mathrm{B} / 10$. is self-explanatery. The number 10 . is

- considered to be a real number having a decimal point. Tell what Statement No. 3 does. (Hint: J is an integer.)
(h) Tell what Statement 18 does.
(1) Tell what Statement 19 does.
(j) Tell what Statement 20 does.

3. The first six ewen whole numbers are represented in Base Eight by $0,2,4,6,10$ and 12 . List the first twenty even numbers given in Base Eight. How can you tisll whether or not a whole number represented in Base Eight is even?

FORTRAN PRUGRAM :10. 3

Exercises
(a) Duscribe Statement No. 22.
(b) Describe Statement No. 21.
(c) Explain the statement

$$
K 1=N(J) / 64
$$

(Hint: Since the name Kl begins with the letter K , Kl must be an integer.)
(d) Explain the statement.

$$
K 2=R 1 / 8
$$

4. In Base Ten the number ten raised to the second power is repref sented by 100 or 10^{2}; the number ten raised to the third power is represented by 1000 or 10^{3}. Give alternative representations for the following as integral powers of 10 in Base Eight.
(a) 100000
(c) 1000000
(b) 100000
(d) 10000000

FORTRAN PROGRAM NO. 4
1234567
C BEAU
2 URITE $(3,22)$ NUMBERS $<10^{\prime \prime}$ USING ONE DIGIT TO THE LEFT OF THE DECIMAL
22 FORIIAT (14X, 9H. PROGRAM 4).
1 DIMENSION T(8)
5 READ $(1,23)$ T
3 FORMAT (8110)
6 DO 20 I $=1,8$
$7 \mathrm{~A}=\mathrm{T}(\mathrm{I})$
$8 \mathrm{~K}=10$
$3 \mathrm{~J}=\mathrm{A} / 1 \mathrm{D}^{2}$. ** R
4 IF (J. NE .0) GO TO 18
$9 \mathrm{~K}=\mathrm{K}-1$

1) GO TO 3

18 WRITE (3, 19). A, K
19 FORMAT (12H THE NUMBER, FIO. $0,20 \mathrm{H}$ IS 10 ?
20 CONTINUE
21 STOP
22 END

Detailed Explanation of PORTRAN PROGRAM NO. 4

STATETENT NUMBER	EXPLANATION
2	Printer Writes: PROGRAM $4 * * * * *$ PROBLEM 9 PAGE 42
1	Processor Peserves:
	 $T(1)$ $T(2)$ $T(3)$ $T(4)$ $T(5)$ $T(6)$ $T(7)$ $T(8)$
5	Reader peads In:
	10. 100 1000 10000 100000 100000 etc. $\mathrm{T}(1)$ $\mathrm{etc}(2)$ $\mathrm{T}(3) \circ$ $\mathrm{T}(4)$ $\mathrm{T}(5)$ $\mathrm{T}(6)$ $\mathrm{T}(7)$ $\mathrm{T}(8)$
7	Space A is reserved and the value of $T(1)$ is put there. A
8^{8}	Space K is reserved and the value 10 is put there.

	NOTE,$~ 1$

	${ }_{0}^{\text {the }}$
4	Statement No. 4 is self-explanatory if NE is read "IS NOT EQUAL TC".
${ }^{9}$	Reduce the value of gthe number $1 \begin{aligned} & \text { space } \\ & K\end{aligned}$ by 1 .
10	Change Control to Statement No. 1
18	After going through the above LOOP nine times, the number 1 is in space K and space A contains the number 10 . Why? After the nineth time through, the PRINTER writes:
	. THE NUMBER 10 IS 10 TO THE POWER 1

5. The first five whole numbers that are multiples of four are represented in Base Elght by 0, 4, 10, 14, and 20.
(a) Use cubic Geo-blocks to represent the number 4 in Base Eight.
(b) Use cubiçGeo-blocks to represent thi nurber 10 in Base Eight.
(c) Use cubic Geo-blocks to represent all of the multiples of four between zero and thirty-gix.
(d) Tell which of the following Base Eight numerals represent numbers that are multiples of four.
$4402^{\circ} 10000 \quad 10000000 \quad 240000000004$
$430434005 \quad 32400000 \quad 200007655702$
2067200002567300287565500400
(e) Give a rule for telling whether or not a Base Eight numeral refresents a multiple of four.
6. A number which is not even is \qquad - Twos does jnot divide it. The first five odd whole numbers are represented in Base Four by $1,3,11,13$, and 21 . List the first ten odd numbers given In Base Four. How can you tell whether or not a numeral Indicates a Base Four odd number?

FORTRAN PROGRAM HO. 5
1234567
C BEAU

C PROGRAM TO GIVE THE MULTIPLES OF FOUR IN BASE EIGHT
22 FOEMAT (2X, 35II PROGRAM 5***** PROBLEM 12 PAGE 44//)
WRITE $(3,22)$
DIMENSION A(100)
INTEGER $1, D 4, D 3, D 2, D 1, D 5$
READ (1,1)-in
1 FORMAT (I3)
DO 3 I $=1, \mathrm{~N}$
C THE FIRST 100 MULTIPLES OF FOUR ARE COMPUTED IN BASE TEN
$\mathrm{A}(\mathrm{I})=\mathrm{J} * 4$
C THE DIGIT ASSOCIATED WITF HUNDREDS PLACE IN BASE EIGHT IS COMPUTED $\mathrm{D} 3=\mathrm{A}(\mathrm{I}) / 64$
C IF D3 IS EQUAL TO ZERO, THEN TIE STATEMENT LABELED 6 IS EXECUTED IF (D3.ET.0) GO TO 6
C TLE VALUE ASSOCIATED WITH D3 IS SUBTRACTED FROM THE MULTIPLE OF FOUR $A(I)=A(I)-(D 3 * 64)$
C THIS STATEMENT COMPUTES THE DIGIT ASSOCIATED WITH THE TENS PLACE IN C BASE EIGHT $6 \mathrm{D} 2=\mathrm{A}(\mathrm{I}) / 8$
C IF D2 IS EQUAL TO ZERO, THEN THE STATEMENT LABELED 8 IS EXECUTED IF (D2.EQ.0) 60 TO 8
C THE VALUE ASSOCIATED WITH D2 IS SUBTRACTED FROM THE MULTIPLE OF FOUR $\mathrm{A}(\mathrm{I})=\mathrm{A}(\mathrm{I})-(\mathrm{D} 2 * 8)$
C THE REMALNING VALUE OF $\bar{\Lambda}(I)$ IS ASSIGNED TO THE DIGIT IN THE UNITS $3 \mathrm{Dl}=\Lambda(\mathrm{I})$
C THE VARIOUS DIGITS ARE COMBINED INTO A THREE PLACE BASE EIGHT NUMPER $\mathrm{A}(\mathrm{I})=\mathrm{D} 3 * 100+\mathrm{D} 2+10+\mathrm{D} 1$
3 CONTINUE
WRITE $(3,10)(A(I), I=1, N)$
C DISCUSS THE FOLDOWING FORMAT STATEMENT
10 FORMAT (10X, $10(16,5 \mathrm{X})$)
STOP
END

JFORTRAN PROGRAI IO. 5 deserve further comments.
(a) The statement

InTEGEP. A, D4, D3, D1, D5
telle the PROCESSOR to round off these varlables downward to the nearest integer and to treat them as integers.
(b) The statement

$$
I P(D S . E Q .0) \text { COTO'2 }
$$

is self-asplanatory if the symbols $E Q$ are interpreted together as "IS EQUAL TO".
(c) The statement
$\operatorname{URITE}(3,10) \quad(A(I), I \propto 1, N)$
causes the PRINTER to print all the numbers $A(I)$ where I takes on all the integral values from 1 to the value of N.
(d) The $10(16,5 \mathrm{X})$ in FORMAT NO. 10 has the same effect as if I6, 5% had been written ten times in succession.

Questions:

(a) What does the 2 X in FORPAT STATEPENT NO. 22 tell the PROCESSOR?
(b) What do the two symbols // in FORMAT STATEMEMT NO. 22 têll the PROCESSOR?
(c) Mexplain in detall, the statement

WRITE $(3,22)$
in FORTRAN PRGGRAM NO. 5.
(d) Explaín in detail,

```
                                    FOR`AT NO. 10.
```

2.3 "ase "our fis \therefore rystem of edrerationi

Ir mase Tour. "3 Dise tin sumbols n 1, 2, 3 and the nurorals
? to ranresofit tion nuber of yole nic'els in a nennv.
1 to remresent tie nerber of moons the eart' 'las. 0
2 to menresent the nu reer of helves in a rhole.
3 eo renrerant t'e number of ancles an a trianme.
In to renresenc tina number of feasons it a ylar.
Il to rentcsent tive num, er of neople in a ber of nudntunlets.
12 to renresent the nurner of earis in a half med carton.
13 to renresent the nu-ber of hays in a veel.

Erercises

1. Mrino the rasc ronr ineration systern, oive numerals to renresont
(a) the numer of tons on your fcet
(b) the number of '?elen in a year
(c) the number of rints in a fallon
? i. rlace Value and race ralur Ir The :ase Jour Tumeration syste.
Finere are four subfivisions in eac's section anc a huilder constructs four sections each beason of the year. more are four ilocks in ach n'arter sut Civision. The 'huilder buysy's. 'onc qoat' wall paint in -rolesale quantities at the arice of Eour dollars ner rallon. A case of wall maint consists of four callons. A car Eas'nt of tins naint con sjets of four cases. f forl:lift consists of four car haslets. A truc': loar consists of four forkiffe. A s'?inment consints of four teuc':-
loads. 1 nareiouse of roll naint consists of four chinments.
me builder constructs eft buildings on each sine of the street in each block. Fac': huildin has four units each consisting of four four -room apartments. since, on the average, a gallon of rall paint is used for each room then a case of wall paint is uses for each unit, and a forcifft of mall paint is used for each building. A truckload - of rall naint is used in each guarter-block and a ghioment of rall paint is used in each block. A warehouse of rall saint is used inf each suarter-subdivision and four warehouses of wall paint are used in each: subdivision.

Obviously, a quart of naínt is a mall of naint and a dias for a cup) of naint is a quarter wall of paint. A class of natant is used in each nan and a half mill of faint is considered to he one roller of paint, ;e have THF PAT:T MTRL

3".
(*)
"e can use $t^{t i}$ e lase nour nueration systen to effectively inds.. cate a snecific auantity of rall paint as rell as the nrice.

In tho Lase rour numeration system, numals are ritten to indi cete tie numbers. The numeral 312 is relten to fridcate the number fifty four. Fiach symol of a numeral har a facer value and a nlacevalue. "or examie in t'onumeral 312, the facsovalue of ? is two and the nlace value of ? is one. The face-value of 1 is one and the nlace value of 1 is fouz. Tha face-value of 3 is three and the placevalue of 3 is sfxteen. The correspondine rase pen nureral is given by the ronresentation $3 \times 16+1 \times 4+2 \times 1$ or 5%. Thus, the number that those nirerals renresent is fifty-four. In the firure belor we have fifty four units of -atrt. 'rat are these units?

Example 1. State the values shown by each symbol in the Base Four numeral 21031.

frover tie? is a syrol for tin tro fifty-gises.
The firet 1 is a syebol for one giyty-four.
The $)$ is geyblol for zero slytenen.
The ? is a symol for three fours.
The second 1 is a symiol for ona one.
Tance, the correshondin? Tase Ten nureral is aiven by

The corresnonifn base elint num?ral les aven by

$$
\begin{aligned}
& 2 \times 4^{n} 7+1 \times 107+7 \times 27+3 \times 4+1 \times 1 \text { or } \\
& 1 \cdots+1 \cdots+7+14+1 \text { or } 1115 .
\end{aligned}
$$

Framic 2. Fou menv rallons of naint wet te afded to the naint in Bxarrle 1 in order to malco a total of inmnn fallons of naint (nase :innt)?
fnsrer "te need 3 oellons to complete the case 3 allons Te need \quad addicional cases to co-slete n mallons t'in carhasket of paint.
"e need 3 nore carhas'rete of raint to comrlete the forlilif. $\quad 3^{n n}$ nallons

Te need 2 rore forliffte of naint to 2 nn rallons
We need $\quad 1$ more rruckload of paint to luouf gallons complete the shipment

We need a total of
12303 gallons

Example 3. State the values shown by each symbol in the Base Four nunaral 132.

Answer: The 1 is a symbol for one sixteen.
The 3 is a symbol for three fours.
The 2 is a symbol for two ones.
Give the corresponding Base Ten numeral.
rive the corresponding Base Eight numeral.

Games:
(a) Use the Paint Model to indicate the Base Four numeral 3.
(b) Use the Paint Model to indicate the Base Four numeral 30.
(c) Use the Paint Model to indicate the Base Four numeral 201.
(d) Use the Paint Model to indicate the Base Four numeral 21.
(e) Use the Paint Model to indicate the Base Four numeral 112.
(f) Use the Paint Model to perform the indicated operations:

$$
\begin{array}{rrr}
2301 & 3233 & 3231 \\
+\underline{1011} & -\underline{1211} & -\underline{2133} \\
\hline
\end{array}
$$

Exercises:

1. Complete the following table.

Modify FORTRAN PROGRAM NO. 1 in order to write FORTRAN PROGRAM NO. 6 so that the answers to Problem 1 above may be computed.
2. The first four even whole numbers are represented by 0,2 , 10, and 12 in Base Four. List the first twenty even Base Four representations. How can you tell if a Base Four, number is even?

Modify fortran program no. 3 to write FORTRAN PROGRAM NO. 7 that will help to obtain the list requested in Problem 2.
3.' List the first twenty multiples of four in Base Four. Tell how one would recognize a multiple of four represegtation in Base Four.
4. The first four odd whole numbers are represented in Base Four by $1,3,11$, and 13 . List the first twenty odd numbers by Base Four representations. How can you tell whether or not a numeral indicates a Base Four odd number?
5. Use the Paint Model to answer the following questions:
(a) How many gallons are there in a warghouse: of paint?
(b) How many gallons are there in a car-basket of paint?
(c) What is a subdivision of paint?
(d) What is a lifetime of paint?

Modify FORTRAN PROGRAM NO. 5 to write FORTRAN PROGRAM NO. 8 to solve Problem 3 above.

```
2.E nase \({ }^{2}\) º 1 Sybten of umeration*
    Ir naze mo, re use the suriols \(n\) and 1 . 'te use t'ie nurnerals
    n to renresent the number of full pallons in a ruart,
    1 to renresent the number of full guarte in a liter,
    1. to represpant t'ie nu-ber of nints in a nuart.
    11 to renresent the nuri,er of ancles in a trianple,
    inn to ranresent the number of quarts in an merican rallon.
    inl to remresent the numer of quarts in a Canadian onllon,
    \(11]\) to represent tine nuriter of days in a treet and
Iron to renresent the nurber of nints in an Arerican rallon.
```


Exercisers

1. Isian the Base Tro irumeration System, five numerals to represent (a) the number of $n+11 \mathrm{~s}$ in a nallon.
(:) the nurber of pints in a half an American mallon.
(c) t've nurber of weles in the year.
(d) the number of cuns in a cuart.
(e) the nurier of nuarts in a half-rallon.
(f) the nurber of nuarts in three rallons.
2.6 Place Value and race Talue In The Tase Tro Mureration System \&

In the 3ase two iumeration syster numerala are mritten to indicate the nurbers. mise six nlace numal 111111 is oritten to indicate tie number sixty-three. Yacil symiol of a numeral has a faro-rolno and a

- Fine ray to rite fror 1 to $1^{\text {nn }}$ in Dase mo is to mrite fronil to 1nn in rase Ton slannine any numer havine a numeral representation containin $234.5 .5 .7,2$ or 3 .
place-value. For example, in the numeral 111111, the face-value of the first 1 is 1 and the olace-value of that 1 is thirty-two. The face-value of the second 1 is 1 and the place-value of that 1 is.sixteen. The face-value of the third 1 is 1 and the place-value of that 1 is eight. The face-value of the fourth 1 is 1 and the nlace-value of that 1 is four.

Zuestion: Can you pive the face-values and place-values for the last two svmbols in the Base Two numeral l11111? If so,' what are thev?

We can use a Base Tro numeration svstem to effectively indicate the measure of a linuid. For example, 111111 cuns renresents one half case, one pallon, one half-ralion, one quart, one pint, and one cup.

Fixed and Floating Points
In dealing with the computations on a digital computer, it is necessary that the students are familiar with the tis numeration systems(1) Fixed points and (2) Floating point.
(1) A flued point system is a numeration system in which the position of the point is fixed with respect to one end of the numeral. Thus, fixed points are integers.

In dealing with fixed point numbers, one must realize that the computer gives out only integer form of values as a result of computation. In other words, the computer truncates all the fractional part of the number.

For example: If 16 is divided by 3 , then the answer given out by the computer will be 5 , even though the correct answer should be 5.3333 ------. Thus the decimal fortion of the number is trungated. Hence, one must be careful and specify if and when the computation : and the result of the ocmputation are desired in integer form.
(2) Floating point numbers are the numbers in which the fixed position of the decimal point is variable in accordance with: the requirement of the computation.

There are three different ways of representing the floating points. They are:
(a) Conventional floating form: Example: The numbers of the form $42.225,3.2534$...etc.
(b) Oxdinary Scientific floating point form:

Example:
$42.4225\left(10^{0}\right) ; 42.4225 \times 10^{0}$; 42.4225×10^{00}; $0.424225 \times 10^{2} ; 0.004225 \times 10^{04}$; . 004225×10^{4}; $42422500 \times 10^{-6} \ldots$ many other variations are possible.
(c) Exponential floating point form:

Example: 42.4225E00; 42.4225E +00 ; 4.24225E01;
4. 24225E1; .424225E02 ... Etc., ... Etc.
(Further discussion on these forms can be found in the discussion of the Format statements.)

Why the exponential floating point form?
To answer this question, consider the following example of multiplication.

$$
\begin{aligned}
& \mathrm{n} \mathrm{n} \mathrm{n} \cdot \mathrm{~d} \mathrm{~d} d \mathrm{~d} \\
& k \frac{m m \cdot \frac{d d d}{k k k \cdot d d d d d} d d}{d}
\end{aligned}
$$

This shows that the decimal point in the product is located so that it is to the left of the sum of the decimal places in both the multiplier end multiplicant.

Furthermore; it is possible to set the number of decimal places in advance whether we are using hand computation or a digital computer. Suppose we decide to have our computation to three decimal places. The disadvantage of this system will be formed in the following illustration:

$$
\begin{array}{r}
0.058 \\
\times \quad 0.0225 \\
\hline 0.000145
\end{array}
$$

Since we are limited to the three digits, we lose all the non-zero digits.

To avoid this kind of difficulties, most computers engaged in scientific computation use the floating point arithmetic. In computers certain circuits are built in so that the decimal points will be aligned so that exponents are equal before addition and subtraction. In mustiplication exponents are added and in division the exponent of the divisor is subtracted from the exponent of the divid'nd. All these are done automatically without requiring any special program instruction. Thus the computation is fast and efficient. Hence it is the advantage of using the third form.

Example 1. State the place-value shown by each symbol in 110101 where the numeral is given in Base Two. Also state the corresponding face-values.

Example 2. How many cups of milk are needed to add to 1001^{\prime} cups to ret a gallon of milk?

Answer:
1 cup is needed to go with the one cup
to get one pint
1 pint is needed to go with this pint
1 quart is needed to go with the
quart thus obtained

1 cup

10 cups
100 cups

111 cups

Games:
(a) Use the rilk model to indicate the Base Two numeral 1.
(b) Use the "ilk Model to indicate the Base Two numeral 101.
c) Use the pilk iodel to perform the indicated operations:

101	111	10110	1111
+100	-011	+1111	

Buercises:

(1) Complete the following table.

Base Tho	1	10	110				
Base Ten					212	45	128

(2) Expand the Base Two numeral 10111 in Base Ten.
(3) List the first sixteen even numbers given in Base Two.
(4) List the first thirty positive integers-given in Base Two.
(5) Tell which of the following Base Two numbers are multiples of four.
(a) 11011
(d) 10110
(b) 110000
(e) 1000010
(c) 11111
(f) 1010000
(6) Tell which of the following Base rwo numhers are each integral powers on 10:
(a) 1100
(c) 11000
(b) 10000000000
(d) 1000
2.7 Comparison of the Base Too System and the Base Fight Syotem With the Base Four System

Example 1a. $\quad{ }^{000}$ two represents the same number as 0 eight
Example 1 b . $\quad 001_{\text {two }}$ represents the same number as $1_{\text {eight }}$
Example 2a.
Example 2 b .
Erampie 3a.
Prample 3b.
Example 3c.
010 two represente the same number as ${ }^{2}$ eight 011 two represents the same number as $3_{\text {eight }}$

100 two represents the same number as 4eight ${ }^{101}$ two represehts the same number as $5^{\text {eight }}$ 110 two represents the same number as 6 eight $111_{t w o}$ represents the same number as ${ }^{7}$ eight Example 4a. 000007 two represente the same number as 00 eight
$\therefore \quad \because$ 4b. 001000 two represents the same number as 10 eipht
Eram $_{t-}$ 5a. $0100_{\text {two }}$ represents the same number as ${ }^{20}$ eigh \dot{t}
Eyample 5 b . 011000 two represents the same number as 30 eight
Evanple 6a: $1000000_{\text {two }}$ represents the same number as 40 eighe
Example 6b. $19100 n$ two reoresents the same number as 50 eight
Example 6c. 110000 two represents the same number as 60 eight
Example 6d. 111000 two renresents the same number as 70 eight
Examnle 7a. 0 00n 000 two represents the same number as 000 eight
Example 7b. 1000007 cwo represents the same number as 100 eighe Consequently,

111, $111,111_{\text {two }}$ represents the same number as $777_{\text {eipht }}$,
101. 100 , $111_{\text {two }}$ represents the same number as $547_{\text {eipht }}$, $a+2100,010,001_{\text {two }}$ represents the same number as $421_{\text {eight }}$.

We easily determine that
456 eight represents the same number as $100,101,110_{\text {twi }}$ and $451_{\text {eight }}$ represents the same number as $101,001,001_{\text {two }}$. 4or 5 examples for Base 4 to Base 2.

Since it io relatively easy to convert from Base Two to Bace Eight, from Base Eight to Dese Two, from Base Two to Base Pour and from Base Four to Base Two, it should be almost as easy to convert fram Base Pour to Base Eight or from Base Eight to Base Four. We need only convert from the first base to Base Two and then convert to the second base. For example,

$$
\begin{aligned}
& 1312_{\text {four }}=1110110_{t} w 0=1110110_{\text {two }}=166_{\text {eight }} \\
& 173_{\text {eight }}=1111011_{\text {two }}=1111011_{\text {two }}=1323_{\text {four }}
\end{aligned}
$$

Exercises

1. Complete the following table.

Base Eight	1	1	1	15	37
Rase Tuo	001	001001			

2. Complete the following table.

Base Efght	70	41	35	314	
Base Tra					111010

3. Complete the following table.

Base Two	101	1010	1101	10001	
Base Fight					26

4. Write programs to:
(a) Change a number from Base 8 to Base 4.
(b) Change a number from Base 4 to Base 8.
${ }_{0}$ Design of a Simple Computer

The relationship among the principal componente of the computer can be understood by examining the figure below.

Input to the computer may be by punched cards, tape, teletype, or directly from the keyboard on the console. Input consists of the set of statements which make up the program. The statements may be instructions to the computer to perform certain operations or data to be used in the processing of the program.

The memory unit is where information is stored until needed in the execution of some part of the program. This is the central part of the ocmputer. All information must pass through it, including data for manipulation and instructions which tell the machine what to do.

The aritheric/logic unit is where the actual computation take place. This unit may add, subtract, multiply or divide: higher-order mathematics is not done directly. This unit also performe certain logical operations; it can determine if a number is posicive or negative, zero or non-zero.

The control unit acts in a supervisory capacity and exercises control over all units in the oystem. It coordinates the activities of te other units by timing and directing the flow of information from one unit to another.

The output section records in convenient form the contents of menory (answers to problems, original data, etc.). Output may be In the form of punch cards, punched tape, magnetic tape or printed sheete.

Let us desten a simple computer and see how it may be operated to solve some simple problems.

First of all we will design a small memory which consists of 25 words, each one has a capacity of storing a two digit number and sign plus or minus.

5.1

Questions :

1. What is the smallest number which can be put in the xemory of our simple computer?
2. What is the dargest number which can be put in the memory of our simple corputer?
3. What sort of instructionsshould we give our computer to ${ }^{a}$ execute? itake a table of them and assign a númber to each of them.

Sample Table

Operations
Arithmetic

Instructions
clear and Add
Add
Subtract
Multiply
Divide " DIV

St $\phi r e$	
Read	
Print	
Transfer	
	Unconditional

Abbreviation

	CLA	1
	ADD	2
	SUB	3
	MUL	4
	DIV	5
0	ST ϕ	6
	READ	7
	. WRITE	8
	G T_{T} ¢	9
-	IF THEN	0

4. How would you instruct our simple computer to add two numbers, say 35 and 17 ?

First instruction will be to read the numbers 35 and 17 from tape or punched card and store in memory cells A and B respectively, where A and B are address of two cells in the computer memory. Second instruction will be to clear the Arithmetic Unit to zero and add A. Third instruction will be to add B. Fourth instruction will be to print out the result which is stored in the Arithmetic Unit.

In ahort, we can write the above instructions as follows:
READ ρA, B
CLA
8
ADD B
PRINT (the sum of A, B)
5. From the instruction table, assign the number which corresponds to each of the instructions in the program for the sum of two numbers.
6. Write a program that will instruct the computer to subtract two numbers, say 35, 17.
7. Write a program that will instruct the simple computer to multiply two numbers, say $35,17$.
8. Write a program to divide 95 by 5 using the method of repeated subtraction.

Consider the following statements in the program Read $(1,11) \Lambda(1), A(2), A(3)$

11 Format (3F 5.2)
(a) What variables are read by the machine?.'
(b) What does 11 refer to in the Read statant?
(c) What does F refer to in the format statement?
(d) Supposing $A(1)=5.6, A(3)=132.75, A(2)=9468.39$. State how the machine would read these.

Exercise \#2 Read $(5,60) A, B, C, J, K 60$ FORMAT (3 F 12.4, 2 I 3)
(a) How many variables are read in the above exercise?
(b) In the Format statement what does 3 F 12.4 refer to what variables?
(c) What type of variables are J, K?
(d) Write the first and last statement of the program in problem number 4 by using a format statement.
(e) At some stag after the computer has gone through all the mathematical steps it must print out our results. That is done by the word write. It's operation is similar to the input operation.

$$
\text { e.g. Write }(5,60) A(1), A(2), A(3), \Lambda(4)
$$

60 FORMAT (A I 2)
Explain the above two statements.
[Note: teacher should provide some examples if necessary.]

There are two types of transfer statements

1. The unconditional transfer-simply states the computer to go to a certain line number such as Go To 6 simply states go next to line number 6.
2. Conditional transfer- There are two kids of conditional statements, one is called logical IF and the other is called arithmetic IF. In the logical the decision is based on a logical quantity being true or false and in a quantity being either less than zero, zero or greater than zero in value.

A logical transfer statement is of the form
IF (expression) statement number
IF expression is true go to statement number, if false go to next statement number in the program.

The (expression) can relate two values by using one of six relational operations.

The form of the arithmetic transfer is

$$
\begin{aligned}
& \text { If (a) } n_{1}, n_{2}, n_{3} \\
& \text { means if } a<0_{2} \text { Go To line number } n_{1} \\
& \text { if } a=0 \text {, Go To line number } n_{2} \\
& \text { if } a>0 \text {, Go To line number } n_{3}
\end{aligned}
$$

Describe what will happen under the conditions given below:
(a) IF (J. NE. O) Go To 18
(b) IF ($J \sim N$) 5, 5, 20
(c) IF (IND) $10,20,30$
$10 \mathrm{X}-\mathrm{Y}$
GO TO 40
$20 X-20 * Y$
CO TO 40
$30 \mathrm{X}=\mathrm{Y} * * 2$
40 STOP $=$
(d) IF (7.GT. SUM) Go To 40

CAL $=$ QU0883
Go To 30
40 CAL - QUO**Z
30
$S I=7$
QUO $=5.0$
$z=2$

Do Loop

Have the students discuss how to read and store a list of 20 - numbers in our computer so that the individual members of the list may be referred to. The object is to have them decide upon some number pattern for referring to the members of the list in the order given. The simplest, and hence the best, way is to number them from L to $20, e . g . A(1), \Lambda(2), \ldots, A(20)$.

The student a may decide to read and store the member e of the Inst all at once or to do it in groups of $10,5,4,2$ or 1 . If one should suggest that the computer be told to repeat the read process, try to bring out the concept of a loop. However, do not force it. If it is brought out in this discussion, the next part will be good to reinforce the concept.

Then consider how to instruct the computer to calculate the sum of the sequence of the members of the list.* Note that only one number may be added at a time. Somewhere during this discussion the idea of having the computer repeat a process should come up. You should be, able to generate a program somewhat like the following.

[^3]$10 \mathrm{X}=0$
$12 \mathrm{I}=0$
$14 \mathrm{~T} 口 1$
16 CLA I
20 ADD T
22 STO I
$24 \mathrm{CLA} \mathrm{A}(\mathrm{I})$
$28 \mathrm{MUL} \mathrm{A}(\mathrm{I})$
30 ZDD X
32 STO X
34 IF I

36 PRINT X
(A.ssumes that the members of the list have been real and stored in the location labelled $A(1), \Lambda(2), \ldots, A(20)$)

Then define an instruction Do $\underline{\underline{I}} \underline{\underline{S}} \underline{\underline{S}}$, E to replace steps $12,14,16,18,20,22$ and 34 . A represents the line number of the final ater, of the process which is to be repeated, I represents the pame of the index which•will count the number of times the process has been done, \leq represents the first value for I (generally 1) and E represents the last value for I. Hence, $E-S$ would be the number of times that the process will be repeated.

The above program then becomes:

```
10 X = 0
20 DO 32 I = 1, 20
24 CLA A(I)
28 INL A(I)
30 ADD X
32 STO X
36 PRINT X
```

Note that the values of \underline{S} and \underline{E} were determined here by the way in which we named the members of our list. The freedom of choice for \underline{S}^{3} and \underline{E} is to allow the index I to be used as we have used it in this program.

Here is an alternate way of writing the program which does not involve using the index during the repeated process-except as a count to determine when to stop. In this case the reading of the list into the computer is done simultaneously with the calculations.
$100 \mathrm{x}=0$
110 DO $160 \mathrm{I}=1,20$
130 READ A
130 LA A
140 MOL A
s.

150 ADD X
160 STD X
170 PRINT X

Have the studento do some exercises such as the following:

1. Write a program to compute $10!$
2. Write a program to calculate the sum of all multipies of 5 Erom 5 to 100.
3. Given a list of ten numbers, write a program to arrange these numbers in ascending order.

Mathematical Operations and Symbols

$\frac{\text { Symbole }}{6}$	Operations
+	Addition
-	Subtraction
$*$	Multiplication
$/$	Division
$* *$	Exponentiation

Write the following exmmples in Fortran.
Example 1.

$$
Z=A(3 B+C)^{3}
$$

Solution:

$$
Z=A *(3 * B+C) * * 3
$$

The order in which the above operation will take place are as follows:

1) Multiply 3*B
2) Add the product of $3 * B$ to C
3) Raise the sum of $3 * B+C$ to the third power
4) Muitiply the results by A.

Rumple 2.

$$
y=\frac{-B+\sqrt{B^{2}-4 A C}}{2 A}
$$

Solution:

$$
Y=(-B+(B * * 2-4.0 * A * C) * * .5) / 2.0 * A
$$

The order in which the above operations will take place are as follows:

1) Raise B to the second power
2) Multiply $4.0 * \mathrm{~A} * \mathrm{C}$
3) Subtract $B * * 2-4.0 * A * C$
4) Raise the remainder to the .5 power
5) Add - B to the results
6) Multiply 2.0%
7) Divide the product into the results in 5).

Problems

Write the following algebraic expressions in the Fortran language.

1) $Y=A B+C$
2) $Y=A^{2}+2 A B+B^{2}$
3) $Z=\frac{A(3 \mathrm{D}+4 \mathrm{C})^{2}}{3 \mathrm{E} C+D}$.
4) $Z=\left[\frac{(4 X+3 Y)^{3}}{2 X Y}\right] 1 / 2$
5) $Y=4\left(8+\frac{5}{2} Z\right)$
6) $Y=\left[7\left(\frac{4 i-2 A C}{3 C}\right)^{4}\right]^{1 / 2}$
7) $Y=4 \times 8 \div 2^{4}$

[^0]: (AL)-Alabama A \& M; (BE)-Bennett; (BI)-Bishop; (CL)-Clarki (EC)-Elizabeth City; (FL)-Florida A $\&_{\prime}^{\prime} M$; (JA)-Jackson State;
 (Li)-Langston; (LI)-Lincoln; (.TH)-Mary Holmes; (NF)-Norfolk State;
 (NC)-N. Carolinà A \& T; (SB)-Southern U.; (SS)-Southern at Shreveport;
 (SA)-St. Augustine; (TA)-Talledega; (TE)-Tennesgee; (TS)-Texas Southern;
 (VO)-Voorhees; (SAC)-Southern Association; (ISE)-Institute For Services to Ed.

[^1]: *Note: The right hand expression need not have been equal to zem ro. It could have been either any other constant or any other type of algebraic expression. (See 1-13 also.)

[^2]: *Stateracnts similar to Staioment 12 are givan below:
 (a) $\operatorname{IF}(\mathrm{I} \cdot \mathrm{NE} \cdot 8$) GO TO $\vdots 6$ neans "If the value of I is not 8 , trancfur to S16".
 (b) IF (I•LT.5) GO TO 7 ncans "Change control to $\mathrm{S7}$ if I ic less than 5."
 (c) $\operatorname{IF}(\mathrm{J} \cdot \mathrm{GT} \cdot 2) \mathrm{GO}$ TO 3 rfans "Change control to S 3 if J is greater than 2.1

[^3]: *lust allow the memory to store number with more than two digits and at least for the location where X is stored.

